Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 658
Filtrar
1.
Front Neurol ; 15: 1378276, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595846

RESUMO

Inner ear disorders have a variety of causes, and many factors can contribute to the exacerbation of cochlear and vestibular pathology. This systematic review aimed to analyze clinical data on the coexistence and potential causal interaction between allergic diseases and inner ear conditions. A search of PubMed and Web of Science identified 724 articles, of which 21 were selected for full-text analysis based on inclusion and exclusion criteria. The epidemiologic evidence found overwhelmingly supports an association between allergic disease and particular inner ear disorders represented by a high prevalence of allergic reactions in some patients with Ménière's disease (MD), idiopathic sudden sensorineural hearing loss (ISSHL), and acute low-tone hearing loss (ALHL). In addition, patients with MD, ISSHL, and ALHL had higher levels of total serum IgE than healthy subjects. Finally, in some cases, changes in cochlear potential may have been induced by antigen exposure, while desensitization alleviated allergy and inner ear-related symptoms. The exact mechanism of interaction between the auditory/vestibular and immune systems is not fully understood, and further clinical and basic research is needed to understand the relationship between the two systems fully.

2.
Talanta ; 274: 125975, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38599114

RESUMO

Sirtuin1 (SIRT1), an NAD+-dependent histone deacetylase, plays a crucial role in regulating molecular signaling pathways. Recently, inhibition of SIRT1 rather than its activation shows the therapeutic potential for central nervous system disorder, however, the discovered SIRT1 inhibitors remains limited. In this work, a dual recognition-based strategy was developed to screen SIRT1 inhibitors from natural resources in situ. This approach utilized a Ni-modified metal-organic framework (Ni@Tyr@UiO-66-NH2) along with cell lysate containing an engineered His-tagged SIRT1 protein, eliminating the need for purified proteins, pure compounds, and protein immobilization. The high-performance Ni@Tyr@UiO-66-NH2 was synthesized by modifying the surface of UiO-66-NH2 with Ni2+ ions to specifically capture His-tagged SIRT1 while persevering its enzyme activity. By employing dual recognition, in which Ni@Tyr@UiO-66-NH2 recognized SIRT1 and SIRT1 recognized its ligands, the process of identifying SIRT1 inhibitors from complex matrix was vastly streamlined. The developed method allowed the efficient discovery of 16 natural SIRT1 inhibitors from Chinese herbs. Among them, 6 compounds were fully characterized, and suffruticosol A was found to have an excellent IC50 value of 0.95 ±â€¯0.12 µM. Overall, an innovative dual recognition-based strategy was proposed to efficiently identify SIRT1 inhibitors in this study, offering scientific clues for the development of drugs targeting CNS disorders.

3.
Phytochemistry ; : 114090, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38599509

RESUMO

In this study, ten phenylpropionyl phenylethylamines, including five previously undescribed ones (1a/b, 2a/b, and 3), five known analogues (4 - 8), and two established phenylpropanoids precursors (9, 10) were isolated from the aerial parts of Chloranthus henryi Hemsl. Their structures, including absolute configurations, were determined by high-resolution mass spectrometry, enantio-separation, electronic circular dichroism calculation, and single crystal diffraction. Compounds 1a and 1b were the first examples of natural hetero-[2 + 2] cycloaddition products between phenylpropionyl phenylethylamine and phenylpropene. The plausible hetero-[2 + 2] biosynthesis pathway was confirmed by a photocatalytic biomimetic synthesis in eight steps, which also led to the production of three other potential natural homo-[2 + 2] adducts (1'a/b, 2', and 3'). Bioactivity screening indicated that these adducts bear medium inhibitory activity on nitric oxide generation, with IC50 values of 6 - 35 µM in RAW 264.7 macrophages.

4.
Chem Sci ; 15(14): 5192-5200, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38577355

RESUMO

Layered transition metal oxides (NaxTMO2) possess attractive features such as large specific capacity, high ionic conductivity, and a scalable synthesis process, making them a promising cathode candidate for sodium-ion batteries (SIBs). However, NaxTMO2 suffer from multiple phase transitions and Na+/vacancy ordering upon Na+ insertion/extraction, which is detrimental to their electrochemical performance. Herein, we developed a novel cathode material that exhibits an abnormal P2-type structure at a stoichiometric content of Na up to 1. The cathode material delivers a reversible capacity of 108 mA h g-1 at 0.2C and 97 mA h g-1 at 2C, retaining a capacity retention of 76.15% after 200 cycles within 2.0-4.3 V. In situ diffraction studies demonstrated that this material exhibits an absolute solid-solution reaction with a low volume change of 0.8% during cycling. This near-zero-strain characteristic enables a highly stabilized crystal structure for Na+ storage, contributing to a significant improvement in battery performance. Overall, this work presents a simple yet effective approach to realizing high Na content in P2-type layered oxides, offering new opportunities for high-performance SIB cathode materials.

5.
Int J Antimicrob Agents ; : 107172, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608845

RESUMO

OBJECTIVES: This study aimed to discover novel antifungals targeting Candida albicans glyceraldehyde-3-phosphate dehydrogenase (CaGAPDH), have an insight into inhibitory mode, and provide evidence supporting CaGAPDH as a target for new antifungals. METHODS: Virtual screening was utilized to discover inhibitors of CaGAPDH. The inhibitory effect on cellular GAPDH was evaluated by determining the levels of ATP, NAD, NADH, etc., as well as examining GAPDH mRNA and protein expression. The role of GAPDH inhibition in C. albicans was supported by drug affinity responsive target stability and overexpression experiments. The mechanism of CaGAPDH inhibition was elucidated by Michaelis-Menten enzyme kinetics and site-specific mutagenesis based on docking. Chemical synthesis was used to produce an improved candidate. Different sources of GAPDH were used to evaluate inhibitory selectivity across species. In vitro and in vivo antifungal tests, along with antibiofilm activity, were carried out to evaluate antifungal potential of GAPDH inhibitors. RESULTS: A natural xanthone was identified as the first competitive inhibitor of CaGAPDH. It demonstrated in vitro anti-C. albicans potential but also caused hemolysis. XP-W, a synthetic side-chain-optimized xanthone, demonstrated a better safety profile, exhibiting a 50-fold selectivity for CaGAPDH over human GAPDH. XP-W also exhibited potent antibiofilm activity and displayed broad-spectrum anti-Candida activities in vitro and in vivo, including multi-azole-resistant C. albicans. CONCLUSION: These results demonstrate for the first time that CaGAPDH is a valuable target for antifungal drug discovery, and XP-W provides a promising lead.

6.
Chin J Nat Med ; 22(3): 195-211, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38553188

RESUMO

Natural products (NPs) have consistently played a pivotal role in pharmaceutical research, exerting profound impacts on the treatment of human diseases. A significant proportion of approved molecular entity drugs are either directly derived from NPs or indirectly through modifications of NPs. This review presents an overview of NP drugs recently approved in China, the United States, and other countries, spanning various disease categories, including cancers, cardiovascular and cerebrovascular diseases, central nervous system disorders, and infectious diseases. The article provides a succinct introduction to the origin, activity, development process, approval details, and mechanism of action of these NP drugs.


Assuntos
Produtos Biológicos , Humanos , Estados Unidos , Produtos Biológicos/farmacologia , China , Coração
7.
Int Immunopharmacol ; 131: 111789, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38484668

RESUMO

Physalin H (PH), a withanolide isolated from Physalisangulata L. has been reported to have anti-inflammatory effect. However, its impact on acute lung injury (ALI) remains unexplored. In this study, we observed that PH significantly alleviated inflammation in LPS-stimulated macrophages by suppressing the release of proinflammatory cytokines (TNF-α, IL-1ß, and IL-6) and down-regulating the expression of the inflammation-related genes. RNA sequencing analysis revealed a significant up-regulation of the NRF2 pathway by PH. Further investigation elucidated that PH attenuated the ubiquitination of NRF2 by impeding the interaction between NRF2 and KEAP1, thereby facilitating NRF2 nuclear translocation and up-regulating the expression of target genes. Consequently, it regulated redox system and exerted anti-inflammatory effect. Consistently, PH also significantly alleviated pathological damage and inflammation in LPS-induced ALI mice model, which could be reversed by administration of an NRF2 inhibitor. Collectively, these results suggest that PH ameliorates ALI by activating the KEAP1/NRF2 pathway. These findings provide a foundation for further development of pH as a new anti-inflammatory agent for ALI therapy.


Assuntos
Lesão Pulmonar Aguda , Fator 2 Relacionado a NF-E2 , Secoesteroides , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Lipopolissacarídeos/farmacologia , Transdução de Sinais , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Anti-Inflamatórios/efeitos adversos , Inflamação/tratamento farmacológico , Pulmão/patologia
8.
Bioorg Chem ; 146: 107259, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460335

RESUMO

Trisarcglaboids A and B (1 and 2), representing the first example of lindenane sesquiterpenoid trimers repolymerized based on the classical [4 + 2] type dimer, together with known biogenic precursors chlorahololide D (3) and sarcandrolide A (4), were identified as chemical components of the root of Sarcandra glabra. The novel trimeric lindenane sesquiterpenoid skeletons, including their absolute configurations, were characterized using MS, NMR, ECD, and X-ray single crystal diffraction. The proposed Diels-Alder cycloaddition between Δ2(3) of the tiglic acyl group of the classical [4 + 2] type dimer and Δ15(4),5(6) of the third lindenane may serve as the key biogenic step. In addition, compound 1 exerted significant cytotoxicity against five human cancer cell lines with IC50 values ranging from 1 to 7 µM, potentially through blocking Akt phosphorylation and activating the endogenous apoptosis pathway.


Assuntos
Antineoplásicos , Sesquiterpenos , Humanos , Polimerização , Antineoplásicos/farmacologia , Reação de Cicloadição , Sementes , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Estrutura Molecular
9.
Chemistry ; : e202400438, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470414

RESUMO

A novel approach has been developed for the synthesis of bicyclic ß, γ-fused bicyclic γ-ureasultams containing two consecutive chiral centers through an intramolecular Mannich and aza-Michael addition cascade of alkenyl sulfamides. The straightforward practical procedure and readily available starting materials enable the synthesis of variously substituted ureasultams. In addition, bicyclic γ-ureasultams is a class of potential biotin analogues.

10.
Eur J Med Chem ; 268: 116301, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452727

RESUMO

In this work, a novel of dual tubulin/HDAC inhibitors were designed and synthesized based on the structure of natural product millepachine, which has been identified as a tubulin polymerization inhibitor. Biological evaluation revealed that compound 9n exhibited an impressive potency against PC-3 cells with the IC50 value of 16 nM and effectively inhibited both microtubule polymerization and HDAC activity. Furthermore, compound 9n not only induced cell cycle arrest at G2/M phase, but also induced PC- 3 cells apoptosis. Further study revealed that the induction of cell apoptosis by 9n was accompanied by a decrease in mitochondrial membrane potential and an elevation in reactive oxygen species levels in PC-3 cells. Additionally, 9n exhibited inhibitory effects on tumor cell migration and angiogenesis. In PC-3 xenograft model, 9n achieved a remarkable tumor inhibition rate of 90.07%@20 mg/kg, significantly surpassing to that of CA-4 (55.62%@20 mg/kg). Meanwhile, 9n exhibited the favorable drug metabolism characteristics in vivo. All the results indicate that 9n is a promising dual tubulin/HDAC inhibitor for chemotherapy of prostate cancer, deserving the further investigation.


Assuntos
Antineoplásicos , Chalconas , Neoplasias da Próstata , Masculino , Humanos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , Moduladores de Tubulina/química , Inibidores de Histona Desacetilases/farmacologia , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Neoplasias da Próstata/tratamento farmacológico , Apoptose
11.
Fitoterapia ; 174: 105843, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301937

RESUMO

In this research, five new indolequinazoline alkaloids (1-5), along with six known indolequinazoline alkaloids (6-11) were obtained from the fruits of Tetradium ruticarpum. Their structures were elucidated through comprehensive spectroscopic data of 1D and 2D NMR, HRESIMS and ECD spectra. Additionally, all isolates were assayed for their SIRT1 inhibitory activities in vitro and compounds 2, 7, 10 and 11 exhibited activities with IC50 values ranged from 43.16 to 118.35 µM.


Assuntos
Alcaloides , Evodia , Evodia/química , Frutas/química , Estrutura Molecular , Alcaloides/análise , Espectroscopia de Ressonância Magnética
12.
Eur J Med Chem ; 268: 116250, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417218

RESUMO

Ferritinophagy is a cellular process to release redox-active iron. Excessive activation of ferritinophagy ultimately results in ferroptosis characterized by ROS accumulation which plays important roles in the development and progression of cancer. Sinomenine, a main bioactive alkaloid from the traditional Chinese medicine Sinomenum acutum, inhibits the proliferation of cancer cells by promoting ROS production. Herein, new compounds were designed and synthesized through the stepwise optimization of sinomenine. Among them, D3-3 induced the production of lipid ROS, and significantly promoted colorectal cancer cells to release the ferrous ion in an autophagy-dependent manner. Moreover, D3-3 enhanced the interaction of FTH1-NCOA4, indicating the activation of ferritinophagy. In vivo experiments showed that D3-3 restrained tumor growth and promoted lipid peroxidation in the HCT-116 xenograft model. These findings demonstrated that D3-3 is an inducer of ferritinophagy, eventually triggering ferroptosis. Compound D3-3, as the first molecule to be definitively demonstrated to induce ferritinophagy, is worth further evaluation as a promising drug candidate in the treatment of colorectal cancer.


Assuntos
Neoplasias Colorretais , Ferritinas , Morfinanos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Ferro/metabolismo , Autofagia , Neoplasias Colorretais/tratamento farmacológico
13.
Eur J Med Chem ; 268: 116204, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364716

RESUMO

The involvement of CDC20 in promoting tumor growth in different types of human cancers and it disturbs the process of cell division and impedes tumor proliferation. In this work, a novel of Apcin derivatives targeting CDC20 were designed and synthesized to evaluate for their biological activities. The inhibitory effect on the proliferation of four human tumor cell lines (MCF-7, MDA-MB-231, MDA-MB-468 and A549) was observed. Among them, compound E1 exhibited the strongest inhibitory effect on the proliferation of MDA-MB-231 cells with an IC50 value of 1.43 µM, which was significantly superior to that of Apcin. Further biological studies demonstrated that compound E1 inhibited cancer cell migration and colony formation. Furthermore, compound E1 specifically targeted CDC20 and exhibited a higher binding affinity to CDC20 compared to that of Apcin, thereby inducing cell cycle arrest in the G2/M phase of cancer cells. Moreover, it has been observed that compound E1 induces autophagy in cancer cells. In 4T1 Xenograft Models compound E1 exhibited the potential antitumor activity without obvious toxicity. These findings suggest that E1 could be regarded as a CDC20 inhibitor deserved further investigation.


Assuntos
Antineoplásicos , Diaminas , Neoplasias de Mama Triplo Negativas , Humanos , Proliferação de Células , Neoplasias de Mama Triplo Negativas/patologia , Apoptose , Carbamatos/farmacologia , Linhagem Celular Tumoral , Proteínas de Ciclo Celular , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas Cdc20
14.
Acta Pharm Sin B ; 14(2): 869-880, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38322336

RESUMO

Pyran- and furanocoumarins are key representatives of tetrahydropyrans and tetrahydrofurans, respectively, exhibiting diverse physiological and medical bioactivities. However, the biosynthetic mechanisms for their core structures remain poorly understood. Here we combined multiomics analyses of biosynthetic enzymes in Peucedanum praeruptorum and in vitro functional verification and identified two types of key enzymes critical for pyran and furan ring biosynthesis in plants. These included three distinct P. praeruptorum prenyltransferases (PpPT1-3) responsible for the prenylation of the simple coumarin skeleton 7 into linear or angular precursors, and two novel CYP450 cyclases (PpDC and PpOC) crucial for the cyclization of the linear/angular precursors into either tetrahydropyran or tetrahydrofuran scaffolds. Biochemical analyses of cyclases indicated that acid/base-assisted epoxide ring opening contributed to the enzyme-catalyzed tetrahydropyran and tetrahydrofuran ring refactoring. The possible acid/base-assisted catalytic mechanisms of the identified cyclases were theoretically investigated and assessed using site-specific mutagenesis. We identified two possible acidic amino acids Glu303 in PpDC and Asp301 in PpOC as vital in the catalytic process. This study provides new enzymatic tools in the epoxide formation/epoxide-opening mediated cascade reaction and exemplifies how plants become chemically diverse in terms of enzyme function and catalytic process.

15.
Hellenic J Cardiol ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38336261

RESUMO

BACKGROUND: Recent studies have highlighted a connection between gut microbiota and hypertension, yet the precise nature of this relationship remains unclear. OBJECTIVE: This research aims to analyze the causal link between gut microbiota and hypertension, along with associated complications, utilizing two-sample bidirectional Mendelian randomization (MR). MATERIALS AND METHODS: Summary data from genome-wide association studies (GWAS) meta-analyses, including gut microbiota GWAS data from 24 cohorts, and the latest GWAS data for hypertension-related conditions were acquired. Employing various MR methods, including Inverse-variance weighted (IVW), MR-Egger, Weighted Median, Simple Mode, and Weighted Mode, we investigated the association between gut microbiota and hypertension-related conditions. Sensitivity analyses were conducted for result stability, and reverse MR analysis assessed the potential for reverse causality. RESULTS: The Mendelian randomization analysis involving 199 microbial taxa and four phenotypes identified 46 microbial taxa with potential causal links to hypertension and its complications. Following Bonferroni correction, genus.Victivallis showed a robust causal relationship with hypertension (OR = 1.08, 95% CI = 1.04-1.12, P = 9.82e-5). This suggests an 8% increased risk of hypertension with each unit rise in genus.Victivallis abundance. CONCLUSION: In conclusion, this study establishes a causal connection between gut microbiota and hypertension, along with common associated complications. The findings unveil potential targets and evidence for future hypertension and complication treatment through gut microbiota interventions, offering a novel avenue for therapeutic exploration.

16.
J Med Chem ; 67(4): 3144-3166, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38336655

RESUMO

Cancer immunotherapy has revolutionized clinical advances in a variety of cancers. Due to the low immunogenicity of the tumor, only a few patients can benefit from it. Specific microtubule inhibitors can effectively induce immunogenic cell death and improve immunogenicity of the tumor. A series of isoquinoline derivatives based on the natural products podophyllotoxin and diphyllin were designed and synthesized. Among them, F10 showed robust antiproliferation activity against four human cancer cell lines, and it was verified that F10 exerted antiproliferative activity by inhibiting tubulin and V-ATPase. Further studies indicated that F10 is able to induce immunogenic cell death in addition to apoptosis. Meanwhile, F10 inhibited tumor growth in an RM-1 homograft model with enhanced T lymphocyte infiltration. These results suggest that F10 may be a promising lead compound for the development of a new generation of microtubule drugs.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , Tubulina (Proteína)/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Relação Estrutura-Atividade , Polimerização , Adenosina Trifosfatases/metabolismo , Morte Celular Imunogênica , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Apoptose , Isoquinolinas/farmacologia , Isoquinolinas/uso terapêutico , Proliferação de Células , Linhagem Celular Tumoral
17.
Org Lett ; 26(7): 1463-1467, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38349252

RESUMO

Arene-tethered diols constitute a valuable class of structural motifs of drug and bioactive natural product molecules. In this study, a regioselective protocol for olefination and arylation of arene-tethered 1,2-diols and 1,3-diols has been developed using easily foldable acetal structures for attaching pyridine and nitrile directing groups. The method overcomes the steric hindrance effect of the short-chain diols and affords products in high yield and regioselectivity. This efficient cascaded catalysis has been successfully utilized in the syntheses of natural products such as peucedanol, decursinol, and marmesin.

18.
J Pharm Biomed Anal ; 242: 116037, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387130

RESUMO

Identifying medicinally relevant compounds from natural resources generally involves the tedious work of screening plants for the desired activity before capturing the bioactive molecules from them. In this work, we created a paper-based ligand fishing platform to vastly simplify the discovery process. This paper-based method exploits the enzymatic cascade reaction between α-glucosidase (GAA), glucose oxidase (GOx), and horseradish peroxidase (HRP), to simultaneously screen the plants and capture the GAA inhibitors from them. The designed test strip could capture ligands in tandem with screening the plants, and it features a very simply operation based on direct visual assessment. Multiple acylated flavonol glycosides from the leaves of Quercus variabilis Blume were newly found to possess GAA inhibitory activities, and they may be potential leads for new antidiabetic medications. Our study demonstrates the prospect of the newly discovered GAA ligands as potential bioactive ingredients as well as the utility of the paper-based ligand fishing method.


Assuntos
Antineoplásicos , Inibidores de Glicosídeo Hidrolases , Inibidores de Glicosídeo Hidrolases/farmacologia , Ligantes , Hipoglicemiantes , Glicosídeos , alfa-Glucosidases
19.
J Asian Nat Prod Res ; 26(1): 18-25, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38189299

RESUMO

Four new nortriterpenoid alkaloids, namely buxrugulines E-H (1-4), along with five known ones (5-9), were isolated from the twigs and leaves of Buxus rugulosa. Their structures were identified based on extensive NMR data and MS spectroscopic analyses. Our bioassays revealed that compounds 5, 6 and 8 exhibited potent cytotoxicity in vitro against MCF-7 cell lines, with IC50 values ranging from 6.70 to 11.00 µM, respectively.


Assuntos
Alcaloides , Buxus , Triterpenos , Humanos , Buxus/química , Triterpenos/farmacologia , Triterpenos/química , Alcaloides/farmacologia , Alcaloides/química , Células MCF-7 , Espectroscopia de Ressonância Magnética , Estrutura Molecular
20.
ACS Appl Mater Interfaces ; 16(2): 2330-2340, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38165730

RESUMO

It remains a tremendous challenge to achieve high-efficiency bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) for hydrogen production by water splitting. Herein, a novel hybrid of 0D nickel nanoparticles dispersed on the one-dimensional (1D) molybdenum carbide micropillars embedded in the carbon layers (Ni/Mo2C@C) was successfully prepared on nickel foam by a facile pyrolysis strategy. During the synthesis process, the nickel nanoparticles and molybdenum carbide were simultaneously generated under H2 and C2H2 mixed atmospheres and conformally encapsulated in the carbon layers. Benefiting from the distinctive 0D/1D heterostructure and the synergistic effect of the biphasic Mo2C and Ni together with the protective effect of the carbon layer, the reduced activation energy barriers and fast catalytic reaction kinetics can be achieved, resulting in a small overpotential of 96 mV for the HER and 266 mV for the OER at the current density of 10 mA cm-2 together with excellent durability in 1.0 M KOH electrolyte. In addition, using the developed Ni/Mo2C@C as both the cathode and anode, the constructed electrolyzer exhibits a small voltage of 1.55 V for the overall water splitting. The novel designed Ni/Mo2C@C may give inspiration for the development of efficient bifunctional catalysts with low-cost transition metal elements for water splitting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...